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Abstract

Most of our understanding of bacterial chemotaxis comes from studies of Escherichia coli.

However, recent evidence suggests significant departures from the E. coli paradigm in other

bacterial species. In the first part of this work, we argue that the observed departures may stem

from different species inhabiting distinct environments and thus adapting differently to specific

environmental pressures. We therefore study the performance of various chemotactic strate-

gies under a range of stochastic time- and space-varying attractant distributions in silico. We

describe a novel type of response in which the bacterium tumbles more when attractant concen-

tration is increasing, in contrast to the “adaptive” response of E. coli, and demonstrate how this

response explains the behavior of aerobically-grown Rhodobacter sphaeroides. In this “specu-

lator” response, bacteria compare the current attractant concentration to the long-term average.

By tumbling persistently when the current concentration is higher than the average, bacteria

maintain their position in regions of high attractant concentration. If the current concentration

is lower than the average, or is declining, bacteria swim away in search of more favorable con-

ditions. When the attractant distribution is spatially complex but slowly-changing, this response

is as effective as that of E. coli. In the latter part of this work, we show that optimal response

sensitivity is high for both adaptive and speculator responses. We argue that response sensi-

tivity would increase over long evolutionary timescales and show that increases in response

sensitivity could drive the evolution of adaptive and speculator responses.
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Chapter 1

Introduction

While bacterial motility was discovered in 1683 by van Leeuwenhoek, who noted “many very

small living animals, which moved very prettily” [2, p. 123], chemotaxis, the directed move-

ment of bacteria toward attractant and away from repellent chemicals, was not described until

the 1880s by Pfeffer [3] and Engelmann [4]. In the 1960s, the molecular basis of chemo-

taxis began to be elucidated starting with Adler and followed by Berg and colleagues, who

explained how the biochemistry gives rise to the behaviour [5]. However, the early studies used

Escherichia coli or Salmonella enterica, serovar typhimurium as model systems, whose bio-

chemistry and behaviour is much simpler compared to other bacteria, as shown by Armitage

and others later [6, 7, 8]. Recent years have seen another paradigm shift: the early notion

that chemotaxis is metabolism-independent, also based on research in E. coli, proved not to be

true [9, 10]. In this work, we try to explain the variety of behaviours seen in different bacteria.

We argue that this requires us to consider chemotactic behaviours through the lens of the habi-

tats the bacteria live in. Furthermore, we suggest a specific role for the metabolism-dependent

behaviours in the early evolution of chemotaxis. Most importantly, we describe a new type

of chemotactic strategy, called the “speculator” response, which is different from the paradig-

matic “adaptive” response of E. coli. We show that the speculator response allows bacteria

to co-localise with attractant and under some circumstances, it is as effective as the adaptive

response. We present evidence suggesting that wild-type Rhodobacter sphaeroides uses the

speculator response when grown under aerobic conditions.

This Chapter is organised in the following way: we start by briefly reviewing the numerous

roles chemotaxis plays in various biological processes. We then discuss the different modes of

bacterial motility and how chemotaxis relates to other types of taxis. We continue by describing

the chemotactic behaviour, biochemistry and properties of the chemotactic response of E. coli,

followed by a discussion of chemotaxis in other bacterial species. Last, we discuss previous

research on chemotaxis evolution, thus setting up the stage for this work.
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1.1 Chemotaxis in biological processes

Chemotaxis plays a role in the pathogenic behaviour of a number of bacteria. For example,

chemotaxis helps Helicobacter pylori, one of the causative agents of peptic ulcers in humans,

infect mouse hosts [11]. Likewise, virulence of Pseudomonas aeruginosa, an opportunistic

human pathogen, was found to be attenuated in mice when one of the chemotaxis genes was

mutated [12]. Furthermore, in P. aeruginosa, chemotaxis is involved in biofilm formation [13]

and biofilms were implicated in a number of human [14] and plant [15] diseases, including

cystic fibrosis, chronic bacterial prostatitis and periodontitis. Biofilms also pose problems for

medical devices such as prosthetic heart valves, contact lenses and intrauterine devices [14].

Agrobacterium tumefaciens which causes crown gall disease in plants requires chemotaxis for

pathogenicity in some types of soil [16].

Chemotaxis is also important in many processes in mammals. For example, it allows

sperm to be guided to the egg [17]. Furthermore, chemotaxis is important in embryogenesis

for the correct positioning of cells in the embryo [18]. Chemotaxis also guides axons during

the development of the nervous system [19] and disruption of the neural migration leads to

diseases such as schizophrenia, bipolar disorder and depression [20]. Chemotaxis is involved

in the spread of cancer cells to healthy organs. Importantly, numerous drugs that target the

chemicals attracting the metastasising cells are currently in use or undergoing clinical trials [21].

Chemotaxis also allows the cells of the immune system to patrol the body for foreign substances

as well as travel to inflammation sites [22]. Some of the chemokines that act as attractants for

the cells of the immune system have been implicated in HIV infection, multiple sclerosis and

atherosclerosis [23].

Chemotaxis is also involved in symbiotic relationships between bacteria and animal or

plant hosts. For example, bacteria facilitate nitrogen fixation in plants and are guided to plant

roots by chemotaxis [24]. The bioluminiscent bacterium Vibrio fischeri is assisted by chemo-

taxis in colonising a type of squid, preventing the squid from being seen by predators [25]. In

the ocean, nutrients were traditionally considered to be distributed homogenously due to water

turbulence, making chemotaxis superfluous. However, recent developments show that this is

not the case and marine bacteria do take advantage of chemotaxis. This may have implications

for the rates of carbon, nitrogen and sulphur cycling in the ocean [26].



1.2. Types of motility and taxis 15

1.2 Types of motility and taxis

1.2.1 Motility

The major modes of active bacterial movement are swimming, swarming, twitching, gliding

and actin-based motility. In liquid media, bacteria use swimming and movement is achieved by

the rotation of flagella which act as propellers. Swarming, twitching and gliding are all surface-

based types of motility [27]. While swimming is used by individual cells, swarming is a group

behaviour and swarmer cells have more flagella per cell than swimmer cells (hyperflagellation).

Twitching requires type IV pili which act as grappling hooks: they extend from the front of

the cell, adhere to the surface and retract, pulling the cell forward. The definition of gliding

has evolved over time; at present, gliding is defined as a type of surface motility that involves

neither flagella nor pili. A recent review discusses the possible ways in which gliding could be

achieved [28]. Actin-based motility is used by some intracellular microorganisms and involves

the exploitation of the eukaryotic cytoskeleton for movement within and between eukaryotic

cells [29].

1.2.2 Taxis

Chemotaxis is the best-studied member of a wider class of taxis behaviours. While in chemo-

taxis cells seek high attractant concentrations, in precision sensing cells localise at intermediate

values [30]. This is the case in thermotaxis [31] and pH taxis [32]. Interestingly, in E. coli, pH

taxis [32] and likely also thermotaxis [33, 34] are mediated by the same pathway that gives rise

to chemotaxis. Osmotaxis may be similar to precision sensing in that cells are repelled by low

and high concentrations of osmotic agents and attracted by intermediate levels [35] but this be-

haviour is much less understood. In magnetotaxis, bacteria sense Earth’s magnetic field; in the

Northern (Southern) hemisphere, bacteria move in the direction of the North (South) pole [36].

Depending on latitude, this may direct magnetotactic bacteria towards the ground. This allows

bacteria to migrate nearly vertically in a water column, assisting them in the migration toward

preferred oxygen concentrations (aerotaxis; see below) [37].

1.2.2.1 Energy taxis

Adler noted in the summary of his landmark 1969 paper that in E. coli, “[e]xtensive metabolism

of chemicals is neither required, nor sufficient, for attraction of bacteria to the chemicals” [38,

p. 1596]. For a long time, chemotaxis was therefore considered metabolism-independent. How-

ever, extensive evidence now suggests that metabolism-dependent chemotaxis (also referred to

as energy taxis) may actually be quite widespread. In energy taxis, bacteria respond to their

own metabolic state rather than responding directly to the concentration of attractant. For ex-
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ample, in E. coli, fumarate, an intermediate in the citric acid cycle, has been shown to regulate

flagellar rotation [39, 40]. In Azospirillum brasilense, chemotaxis to most attractants was found

to be metabolism-dependent [41]. One of the signatures of energy taxis may be the fact that

bacteria accumulate in regions of attractant optimal for growth rather than regions with the

highest attractant concentration [10]. A case in point is A. brasilense which accumulates at low

concentrations of oxygen optimal for nitrogen fixation [42].

Interestingly, aerotaxis and phototaxis are examples of both metabolism-independent and

metabolism-dependent chemotaxis. In an archaeon Halobacterium salinarum, oxygen appears

to bind directly to a transducer protein and mediates the attraction of cells to regions high in

oxygen, suggesting metabolism-independent taxis [43]. On the other hand, evidence from E.

coli [44, 45], R. sphaeroides [46] and A. brasilense [41] suggests that changes in oxygen con-

centration affect the electron transport chain, which in turn affects the chemotactic behaviour of

the bacteria, providing examples of metabolism-dependent chemotaxis. In some cases, it was

possible to pinpoint where in the electron transport chain the signal sensed by the chemotactic

pathways originates: in E. coli, receptors Aer and Tsr sense changes in the redox state and

proton motive force, respectively, and transduce the signals to the chemotaxis pathway [47].

In Synechocystis sp. PCC 6803, phototaxis appears to be metabolism-independent because

bacteria respond to light intensity gradients rather than absolute light intensity (responding to

absolute intensity may be more relevant when seeking light intensity optimal for growth [10])

and inhibitors of photosynthesis have no effect on the phototactic response [48]. Furthermore,

phototaxis in this species may be mediated by a photoreceptor that senses light directly [49].

On the other hand, phototaxis in R. sphaeroides is dependent on the photosynthetic apparatus

and is therefore metabolism-dependent [50].

Another example of energy taxis is redox taxis where chemicals in the environment sur-

rounding bacteria affect the redox state of the electron transport chain [51]. As mentioned

above, Aer receptor in E. coli senses changes in the redox state caused by changes in oxygen

concentration [47]; this behaviour is therefore aerotaxis as well as redox taxis.

1.3 Chemotaxis in E. coli

1.3.1 Behaviour

Movement of bacteria in liquid media consists of swimming (running) in straight lines (subject

to rotational diffusion) interrupted by tumbling, i.e. re-orienting in a new, nearly random direc-

tion (early studies also referred to tumbles as twiddles) [52]. It was established early on that

bacteria are too small (on the order of micrometres) to sense a spatial attractant gradient, i.e.
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the difference in attractant concentration between the front and back of the cell [53]. Instead,

bacteria move through space and sense temporal attractant gradients: they compare the recent

attractant concentration to an attractant concentration experienced some time ago and respond

to the difference [53, 54]. To describe this response in E. coli, we define the tumbling rate, that

is, the probability of initiating a tumble per short time interval. In the absence of changes in

the experienced attractant concentration, the tumbling rate is constant. When the bacterium ex-

periences an increase in attractant concentration, tumbling rate decreases, increasing the length

of runs in the direction of increasing attractant. Upon a decrease in the experienced attractant

concentration, tumbling increases, shortening runs in an unfavourable direction [52, 53]. The

bacterium responds to a decrease in repellent concentration in the same way as it does to an

increase in attractant concentration [55].

E. coli possesses 5–10 peritrichous (located randomly on the surface of the cell) flagella.

Running and tumbling correspond to the two directions in which the flagella can spin. Counter-

clockwise (CCW) spinning results in running while clockwise (CW) spinning causes tumbling.

While spinning CCW, the flagella function in a highly coordinated manner, forming a bundle.

Spinning CW disrupts the bundle structure, which causes tumbling [56].

1.3.2 Biochemistry

In this section, we describe how the chemotactic behaviour of E. coli is achieved biochemi-

cally. A decrease in attractant concentration reduces the number of attractant molecules bound

to receptors. Low occupancy of receptors promotes the activity of CheA via interaction with

CheW [57]. CheA phosphorylates CheY [57] which is directly involved in switching the ro-

tation of the flagellar motor to clockwise, inducing tumbling [58]. Continued tumbling due

to increased levels of CheYp is prevented by the action of CheZ which dephosphorylates

CheYp [59]. This excitation branch of the pathway is complemented by an adaptation branch,

together achieving temporal comparison of attractant concentration. The adaptation branch in-

volves two enzymes, CheR and CheB, that methylate [60] and demethylate [61] the receptors,

respectively. This makes the receptors more or less capable of promoting CheA’s activity [62].

In addition, CheA upregulates CheB’s activity [59]. In summary, when the bacterium experi-

ences a decrease in attractant concentration, tumbling is induced via CheA (through the excita-

tion branch), but CheA also increases CheB’s activity resulting in demethylation of receptors,

which in turn downregulates CheA, returning the tumbling rate to basal levels (through the

adaptation branch). Crucially, methylation and demethylation are both slower than the other

reactions [54]. As a consequence, it is the interplay of two factors, receptor occupancy by

attractant molecules (that represents the current attractant concentration), and receptor methy-
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lation level (representing the past attractant concentration), that determines the tumbling rate.

The resulting chemotactic response is referred to as the adaptive response after the relaxation of

the tumbling rate (adaptation) that follows the initial peak response (excitation). Interestingly,

the tumbling rate relaxes exactly to pre-stimulus levels after the attractant concentration stops

changing [52, 53, 55], exhibiting “perfect”, “precise” or “exact” adaptation. The time it takes

for the tumbling rate to relax is referred to as the adaptation time.

1.3.3 Properties of the chemotactic response

The receptors of E. coli can detect minute differences in attractant concentration: responses

were observed to a one-molecule change in receptor occupancy [54] (more recent estimates

show responses to 3nM changes in attractant concentration [63]). Furthermore, E. coli shows

high response sensitivity: an increase in receptor occupancy of 0.1–0.2% results in a transient

10% decrease in the tumbling rate [54], corresponding to a 50- to 100-fold amplification. Note

the subtle difference in the two kinds of sensitivity: first, the receptors are sensitive in that

they can detect small changes in attractant concentration. Second, the response is sensitive

meaning that small changes in attractant concentration lead to large changes in the tumbling

rate. (The molecular basis for response sensitivity is discussed in Section 3.1.) Bacteria have a

wide “dynamic range”, that is, they can respond to changes in attractant concentration spanning

multiple orders of magnitude; this is at odds with high response sensitivity: with a 100-fold

amplification, the response should saturate for a 1% increase in receptor occupancy. However,

it was shown that the methylation state of the receptors affects the response sensitivity and

thus allows wide dynamic range [64, 65]. Furthermore, bacteria exhibit Weber’s law, i.e. they

respond to relative rather than absolute changes in attractant concentration [66]. Related to this

is the finding that bacteria respond to changes in the logarithm of attractant concentration [67,

68] and the ability of bacteria to perform fold-change detection [69].

In genetically identical cells, some aspects of the chemotactic response (adaptation time,

steady-state tumbling rate) are found to vary on a cell-to-cell basis, while others (precision

of adaptation) stay uniform or robust [70, 71, 72]. Stochasticity in protein expression levels

affects the numbers of protein members of the chemotactic pathway, explaining the observed

variation in adaptation time and steady-state tumbling rate [70]. On the other hand, topology of

the chemotactic pathway [71] (established to be the “minimal topology providing high robust-

ness” [73, p. 507]) and translational coupling of genes encoding the pathway [74] are thought to

be responsible for robust perfect adaptation. Furthermore, it has been shown that robust perfect

adaptation is encoded via integral feedback control [75].

Adaptation time and steady-state tumbling rate may be variable for a reason. Adaptation
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time is equivalent to memory length, i.e. how far back in the past the bacterium “remembers”

attractant concentrations. Longer memory is less sensitive to fluctuations in attractant concen-

tration as it is easier to make out the general trend over a longer period of time (longer memory

therefore acts as a low-pass filter [76]). However, longer memory may also make the cell re-

spond to past attractant concentrations that are no longer relevant [70, 77, 78]. In a changing

environment, it might be advantageous for a bacterial population to be heterogeneous in mem-

ory length [70, 78, 79] as this would result in bet-hedging ensuring that some members of the

population always perform well, regardless of the specifics of the environment [80]. As for the

steady-state tumbling rate, research indicates that keeping CheR expression at low levels would

cause higher CCW rotation and longer runs, allowing the cells to explore their environment

more efficiently[81, 82].

1.4 Chemotaxis in other bacteria

1.4.1 Behaviour

While some bacteria exhibit the same chemotactic behaviour as E. coli, responses of other bac-

teria differ. S. typhimurium [83] and Bacillus subtilis [84] are both examples of bacteria whose

responses are very similar to that of E. coli. R. sphaeroides also shows the adaptive response

(although see below) but its tumbling mechanism is different: while E. coli possesses multiple

bidirectional flagella and tumbling is caused by their CCW rotation, R. sphaeroides possesses

a single unidirectional flagellum and tumbling is due to Brownian motion that follows when

the flagellum stops rotating [85]. Flagella in Sinorhizobium meliloti are also unidirectional but

tumbling is caused by slowing their rotation [86]. Myxococcus xanthus displays the adaptive

response despite the lack of flagella and use of surface-based gliding motility [87].

Variability in the behaviour of individual cells in populations of R. sphaeroides was re-

ported. In particular, durations of tumbles, running speeds and adaptation times (some cells

did not adapt at all) appeared to be more variable in R. sphaeroides [88] than in E. coli [52].

Interestingly, the aerotaxis receptor Aer of E. coli is not methylated and this appears to have no

effect on the aerotactic efficiency as judged from swarm plates [89]. While a mechanism for

methylation-independent adaptation has been proposed [89], it is also possible that adaptation

is not actually required for successful chemotaxis. A. brasilense also exhibits methylation-

independent aerotaxis [90].

Curiously, responses have been identified in which tumbling increases upon an increase in

attractant. This appears to be the case in many mutant strains, such as aerotaxis [91] and redox

taxis [51] in mutated E. coli, aerotaxis in mutated S. typhimurium [91], and phototaxis in mu-
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tated Halobacteria [92]. In S. typhimurium chemotaxis, this alternative response can be caused

by one of a number of single point mutations in the gene cheU that codes for a component of

the flagellar motor switch [93]. In wild-type, aerobically-grown R. sphaeroides, this response

was observed for a number of different attractants; crucially, bacteria exhibiting this response

were capable of accumulating in regions with high attractant concentration [1]. R. sphaeroides

contains 3 operons in its genome that encode chemotactic pathways [94]. Interestingly, the

alternative response was also observed in anaerobically-grown bacteria in which operon 2 was

deleted. In genetically-intact bacteria, this response is presumably masked by high levels of

expression of operon 1 [95].

1.4.2 Biochemistry

Differences in chemotactic behaviour reflect differences in the underlying biochemistry. What

can we then say about biochemistries of other bacteria? First, the same response does not

necessarily mean the same biochemistry. As we mentioned in the previous section, response

of B. subtilis is similar to that of E. coli. However, the network encoding the response is

more complicated. For one thing, B. subtilis has two adaptation modules: one consists of the

CheB-CheR pair and the other uses CheY feedback. In addition, the bacterium lacks CheZ and

contains CheC, CheD and CheV which are not found in E. coli [84]. An analysis of prokaryotic

genomes revealed that CheA, CheW, CheR, CheB, and the receptors belong to a set of core

chemotactic proteins whereas the other proteins (the ones already mentioned and CheX) are

“auxilliary” proteins—they are found in the genomes at a considerably lower frequency [96].

In a 2010 study, 61 out of 206 prokaryotic genomes were found to contain more than one

of each of CheA, CheW, CheR, and CheB, suggesting that these bacteria have more chemo-

tactic pathways. Furthermore, analysis of the genomes demonstrated that sets of genes may be

clustered into operons [97]. Experimental results from R. sphaeroides support this hypothesis.

The bacterium has 3 operons encoding 3 sets of chemotactic genes. Importantly, protein prod-

ucts of the third operon were reported to localise to the cytoplasm whereas products of operon

2 localise to the cell pole (as in E. coli) [98], providing further separation of pathways [97].

Moreover, as Table 2 in [87] shows, a number of other species have multiple chemotactic path-

ways. Interestingly, some chemotactic pathways appear to have been co-opted for functions

other than chemotexis. For example, P. aeruginosa has 5 clusters of chemotactic genes; cluster

III has been implicated in biofilm formation [13] and cluster IV controls the production of type

IV pili which are required for chemotaxis by twitching motility [99]. Furthermore, 2 out of 8

clusters in M. xanthus regulate developmental gene expression [87].

Bacterial species differ in the number of different types of receptors encoded in their
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genomes. Interestingly, this number appears to depend on the bacterial lifestyles; while com-

mensal bacteria such as E. coli have fewer receptors on average, bacteria that are found in

multiple or more variable environments possess more receptors [100]. As discussed above,

receptor clustering enables high response sensitivity in E. coli [65]. More recently, receptor

clustering was found in a number of other bacterial species including R. sphaeroides, suggest-

ing that high response sensitivity may be a more wide-spread phenomenon [101]. Consistently,

the chemotactic response of R. sphaeroides was found to be very sensitive [102]. While in E.

coli, receptors are embedded in the cell membrane, in other bacteria such as R. sphaeroides

and Vibrio cholerae, receptors are also found in the cytoplasm [103, 104]. The cytoplasmic

receptors interact with the products of the third chemotactic operon of R. sphaeroides [98] and

could sense the metabolic state of the cell [103], providing metabolism-dependent chemotaxis

in R. sphaeroides.

1.5 Evolution of chemotaxis

An aspect of chemotaxis which has not been studied in great detail is its evolution. There have

been genomic analyses of chemotaxis [96] and flagellar [105, 106, 107] genes as well as more

specialised analyses of genes coding for receptors [108, 100] and a class of phosphatases unre-

lated to CheZ of E. coli [109]. However, by design, these studies do not address the evolutionary

pressures that shaped chemotaxis. Biochemical networks exhibiting the adaptive response of E.

coli were evolved [110], but in this study, network performance was assessed by determining

how closely the network output matches the adaptive response. A similar approach was used

to evolve networks exhibiting perfect adaptation [111]. The issue with this type of approach is

that it starts with the assumption that adaptive response or perfect adaptation are evolutionarily

fit and given that assumption, networks generating these functionalities are evolved. In reality,

evolution will favour any response that allows bacteria to co-localise with attractant and re-

sponses other than the adaptive response of E. coli may be possible. In a 2008 study, Goldstein

and Soyer [112] used an approach that took this into account. In their simulations, network

output regulated bacterial motility in a virtual world with an attractant distribution, and network

performance depended on the ability of bacteria to find and stay in regions of high attractant

concentration. They obtained networks encoding an “inverted” response in which the tumbling

rate increases with increasing attractant concentration [112]. This is in contrast to the adaptive

response of E. coli where tumbling is reduced when attractant concentration is increasing. By

tumbling persistently in regions of high attractant concentration, virtual bacteria exhibiting the

inverted response can co-localise with attractant efficiently [112]. The strength of this approach
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lies in the use of a more realistic performance (fitness) criterion. A similar criterion was used

in a more recent study where fitnesses of adaptive and inverted responses were analysed as a

function of response sensitivity. The patterns in the fitness landscape suggested a particular role

for response sensitivity in the evolution of chemotactic responses [113]. In this work, we build

on the approaches advanced by [112] and [113], using realistic fitness criteria. In this work,

we put forward a model that is evolutionarily yet more relevant, combining a realistic fitness

criterion with a stochastic attractant distribution mimicking the kinds of environments bacteria

may be expected to inhabit in the wild.

1.6 Aims
We ask two main questions in this work: why do different bacteria use different chemotactic

responses and how has this diversity of approaches arisen? Chapters 2 and 3 address these

questions in turn. In Chapter 2 we suggest that the efficacy of different chemotactic strategies

may vary as a function of environment and bacteria inhabiting distinct environments may thus

adapt to their respective environments by evolving different chemotactic strategies. To test this

hypothesis, we optimise virtual bacteria with different chemotactic strategies under environ-

ments that differ in the way attractant is distributed in time and space. In Chapter 3 we attempt

to identify relevant evolutionary pressures that shaped chemotaxis and possible evolutionary

trajectories leading to the present-day diversity of chemotactic strategies. Building on the work

of [113], we investigate the role of response sensitivity in this process.



Chapter 2

Optimal chemotactic responses in stochastic

environments

2.1 Introduction

While E. coli has been instrumental for our understanding of chemotaxis, other bacteria show

a considerable variety of chemotactic mechanisms and behaviours, as reviewed in Chapter 1.

Perhaps the most perplexing is the observation that some bacteria tumble more in the pres-

ence of attractant. Interestingly, this behaviour was found in wild-type, aerobically-grown R.

sphaeroides [1]. This response seems paradoxical, as the bacterium might be expected to run in

the direction of decreasing attractant concentration and tumble more when it detects an increase

in attractant concentration, leading to the accumulation of bacteria away from the attractant. In

addressing these puzzling results, Goldstein and Soyer demonstrated the chemotactic efficacy

of a non-adaptive “inverted” response [112, 113]. With this strategy, bacteria respond to the

absolute attractant concentration, tumbling more and therefore maintaining their position in re-

gions of higher attractant concentration. Although less effective than the adaptive response, the

inverted response requires only low receptor sensitivity, and could function in the absence of ef-

fective receptors by coupling to the cell metabolism [114]. As we show, there are discrepancies

between the inverted response and the response observed in aerobically-grown R. sphaeroides.

Why do different bacteria exhibit different chemotactic responses? One possible reason

is that different bacteria have evolved for different environments. For example, while E. coli

might be expected to inhabit a resource-rich environment, marine bacteria experience a harsh

environment in which attractant is localised in short-lasting patches [115] with attractant con-

centration inside patches being 3 to 6 orders of magnitude higher than outside [26]. This has led

to a number of marine-specific evolutionary adaptations such as higher running speed in Pseu-

domonas haloplanktis [116] and run-and-reverse (as opposed to run-and-tumble) chemotaxis in

over 70% of marine bacterial species [117]. Unfortunately, most experimental and theoretical
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studies to date consider chemotaxis in response to step functions or simple gradients [118], pro-

viding limited insights to how chemotaxis would function in different types of environments. In

particular, there have been few studies [119, 120] analysing chemotactic strategies in stochastic

environments, which are likely to be the most important environment during the evolution of a

chemotactic response.

In this work we construct a model of a stochastic attractant distribution. By adjusting the

manner in which attractant concentrations vary in time and space, the attractant distribution can

mimic a range of environments that one might expect to find in nature. We use this model to

study how performance and optimal properties of various chemotactic strategies vary as a func-

tion of environmental conditions. In particular, we describe a new type of chemotactic strategy

called the speculator response. It differs from the adaptive response in that the tumbling rate

increases with increasing attractant concentration; furthermore, the bacterium makes temporal

comparisons of attractant concentration which distinguishes the strategy from the inverted re-

sponse. We demonstrate the effectiveness of the speculator strategy and its remarkable match

to the paradoxical response seen in wild-type, aerobically-grown R. sphaeroides [1].

2.2 Methods

2.2.1 Simulation overview

Our simulation is centred around a model of chemotaxis. Model parameters determine the char-

acteristics of a chemotactic response displayed by a virtual bacterium. The bacterium moves in

a one-dimensional virtual world containing a stochastic attractant distribution. Performance, or

fitness, of a response, is equal to the average cell division rate, which we approximate as the

inverse of the time it takes the bacterium to experience a specified amount of attractant. These

components are combined in an optimisation framework which allows us to study the process

of adaptive evolution of chemotaxis. The optimisation consists of a series of rounds of muta-

tion and selection (generations). In the first generation, a “wild-type” chemotactic response is

produced by initialising the model parameters randomly. A “mutant” response is subsequently

generated by mutating one of the model parameters of the wild-type response. Fitnesses of the

two responses are calculated and a Monte Carlo scheme is used to select one of the responses

to pass on to the next generation where it serves as the wild-type.

2.2.2 Stochastic attractant distribution

The attractant distribution varies in both time and space. Two parameters, T (correlation time)

and L (correlation length), determine the dynamics of the distribution. T is the timescale on

which attractant concentrations change, while L determines the distance between peaks of at-
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Figure 2.1: Examples of the stochastic attractant distribution at different combinations of T
and L. Every row corresponds to a different combination. The left (right) panels show the
distribution at time t = 0 (t = 100) in the simulation. a) T = 104, L = 100; b) T = 104, L = 20;
c) T = 100, L = 100; d) T = 100, L = 20.

tractant concentration; the shorter L, the more numerous and narrow the peaks are and the

shorter the distances between them. The average amount of attractant available in the world is

independent of T and L. Figure 2.1 shows how the distribution looks at different combinations

of T and L. Video A illustrates the distribution dynamics as a function of T and L.

We generate the attractant distribution by summing over cosine and sine modes with dif-

ferent mode numbers p so that the attractant concentration at time t and position x along the

virtual world is calculated as

c(x, t) = max

(
0,

p∗

∑
p=1

Xp(t)cos
(

2π px
l

)
+Yp(t)sin

(
2π px

l

))
(2.1)

where Xp(t) and Yp(t) are stochastic weights, l is the length of the one-dimensional virtual

world (l = 100) and p∗ = l/L is the largest mode included in the sum above. Xp(0) =Yp(0) = 0

for all ps, and are updated at intervals of ∆tc = T/100 according to:

Xp(t +∆tc) = Xp(t)(1−∆tc/T )+ηp(t)

√
2∆tc
T p∗

(2.2)

where ηp(t) is a white noise Gaussian random process (〈ηp(t)ηq(t ′)〉 = δtt ′δpq), generated by

a random number sampled from a normal distribution with mean 0 and variance 1. A simi-

lar expression is used for Yp(t +∆tc). By construction, this results in a Markov process with
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correlation time T and approximate correlation length L = l/p∗.

There are other functional forms possible for the attractant distribution. In particular, using

a Gaussian function instead of sines and cosines might be more realistic as it is possible to

model the process of attractant diffusion directly using Gaussian functions. The advantage

of the current model is that, by construction, it allows the dynamics of the distribution to be

finely tuned by adjusting the values of T and L. It is unclear whether such a model could be

constructed as easily with Gaussian functions.

2.2.3 Chemotaxis

To model chemotaxis, we consider a single bacterium in a one-dimensional space with periodic

boundary conditions. The bacterium can run to the left or right, or tumble. α and β denote

the rates at which the bacterium starts and stops tumbling. While β is assumed to be constant,

the basal rate α0 is modulated by the chemotactic response of the bacterium to the experienced

attractant concentrations. In particular, at time t,

α(t) = max
(

0, α0 +
∫ t

−∞

R(t− t ′)c(xB(t ′), t ′)dt ′
)

(2.3)

where R(t) is the chemotactic response function [121] and c(xB(t), t) is the attractant concen-

tration that the bacterium experiences at position xB(t) at time t. In contrast to [121], we do not

assume deviations from α0 to be small.

R(t) = (A/τ +Bt/τ
2)exp(−t/τ) (2.4)

where τ controls the memory length, i.e. how far back in the past the bacterium “remembers”

attractant concentrations, and A and B together determine the sensitivity and the characteris-

tics of the response: adaptive, inverted, or speculator. In the adaptive response, A and B are

constrained such that A < 0 and B = −A. This gives rise to a response function shown in red

in Figure 2.2a that has a positive and a negative lobe. The red curve in Figure 2.2b illustrates

the changes in α due to attractant addition and removal when a response function of this type

is used. When c(xB(t), t) is increasing in time, such as when attractant is added, the nega-

tive lobe of R(t− t ′)c(xB(t ′), t ′) has a larger area than the positive lobe, making the integral in

equation (2.3) negative, leading to an α that is smaller than α0, resulting in a decrease in tum-

bling, as the red curve in Figure 2.2b shows at t = 50. The opposite happens when attractant

is removed, resulting in an increase in tumbling at t = 350. The constraint B = −A results in

equal areas of the positive and negative lobes of R(t), ensuring perfect adaptation and a basal
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tumbling rate (α = α0) for 50 < t < 350. In the inverted response (Figure 2.2a, blue curve),

A > 0 and B = 0, leading to a single-lobe response function. This results in a higher tumbling

rate in the presence of attractant and a lower rate when attractant is absent, as the blue curve in

Figure 2.2b shows. We also investigate a new type of response which we name the “speculator”

response for reasons explained below. In the speculator response, A > 0 and B < 0, leading to

a double-lobe response function (Figure 2.2a, green curve) that looks roughly like the negative

of the adaptive response function (Figure 2.2a, red curve). This causes increased (decreased)

tumbling when c(xB(t), t) is increasing (decreasing) in time (Figure 2.2b, green curve). The

constraint of perfect adaptation is relaxed in the speculator response, so the areas of the positive

and negative lobes are unequal (Figure 2.2a, green curve). This allows the steady-state α in

the presence of constant attractant concentration to be different from α0, as shown for times

100 < t < 350 (Figure 2.2b, green curve). The double-lobe response functions of adaptive and

speculator response cause bacteria to make temporal comparisons of attractant concentration,

while the lack of perfect adaptation in the inverted and speculator responses causes bacteria

to respond to absolute attractant concentrations. Note that Figures 2.2a and 2.2b are purely

illustrative; they do not reflect real or optimised responses.

Before a bacterium is introduced into the virtual world (at xB(0) = 0), the attractant dis-

tribution is equilibrated for a period of at least T and α is initialised based on the equilibrated

attractant distribution. The bacterium is then released and the state of the bacterium (whether

it is running or tumbling) is updated every ∆tB = min(T,L/v,τ/20) where v is the speed of the

bacterium when running (v = 1). After α(t +∆tB) is calculated using Equation (2.3), probabil-

ity of tumbling (pT(t +∆tB)) or running (pR(t +∆tB)) is calculated, depending on whether the

bacterium was running or tumbling previously. pT(t) can be found by solution of the following

first-order differential equation for the two-state system of running and tumbling (note that α is

used as a shorthand for α(t +∆tB) below): dpT
dt = α(1− pT(t))−β pT(t). The rate of change of

pR(t) is equal to −dpT
dt . We are interested in the solutions

pT(T|R, t +∆tB) =
α

α +β
(1− exp(−(α +β )∆tB)) (2.5)

and

pR(R|T, t +∆tB) =
β

α +β
(1− exp(−(α +β )∆tB)). (2.6)

pT(T|R, t+∆tB) is the probability of tumbling given that the bacterium was running previously;

pR(R|T, t+∆tB) is the probability of running given that the bacterium was tumbling previously.

In a Monte Carlo scheme, these probabilities are used to decide whether the bacterium starts
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tumbling or running given its previous state. Note that when the bacterium stops tumbling, it

starts running left or right with equal probability.

Steady-state pT(T|R, t) and pR(R|T, t) can be obtained by setting t = ∞, giving:

pT(T|R, t +∆tB) =
α

α +β
(2.7)

and

pR(R|T, t +∆tB) =
β

α +β
. (2.8)

2.2.4 Mutagenesis

In the first generation of the simulation, all response parameters are initialised randomly from

a uniform distribution between 0 and 1 (but see below). In the adaptive response, only B is

initialised and mutated, A is set to −B (at T = 104, B is initialised between 1 and 10). In the

speculator response, B is initialised randomly between 0 and −1. In every generation, one

response parameter is chosen at random and mutated. Parameters are mutated on a log scale

by a transformation exp(loge(a)+ r) where a is the parameter being mutated and r is a random

number sampled from a uniform distribution between −0.2 and 0.2. Further constraints on

response parameter values are imposed for reasons of computational tractability: α0 > 10−3

in adaptive and inverted response, A > exp(−1) and |B| > exp(−1) in speculator response,

τ > 0.01 in adaptive response.

2.2.5 Fitness

After mutagenesis, the fitnesses of responses described by the wild-type and mutant response

parameters are determined. This is achieved by letting 10 identical wild-type and 10 identical

mutant bacteria explore the virtual world with the stochastic attractant distribution. Each of the

10 wild-type bacteria is subjected to an attractant distribution initialised with a different random

seed; the attractant distributions are then re-used for the 10 mutants. (As the attractant distri-

bution is stochastic, estimates of response fitness are stochastic too. This scheme of competing

the wild-type and mutant with the same attractant distributions is thus used to ensure that lucky

mutants do not fix.) Each of the bacteria is run until it experiences 50T attractant units. Dw,i

(Dm,i) denotes the time it took the i-th wild-type (mutant) to experience the specified amount of

attractant. Fitness of response k = {w,m}, Fk, is then calculated as T 1
10 ∑

10
i

1
Dk,i

.

2.2.6 Selection

Once fitnesses are determined, the probability of acceptance of the mutation, pm, is calculated

using the Metropolis-Hastings algorithm: pm = 1 if Fm ≥ Fw and pm = exp((Fm−Fw)/(UFw))
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Figure 2.3: Fitness of adaptive (red), speculator (green) and inverted (blue) response as a func-
tion of T and L. The two panels show different views of the same plot. For each chemotactic
strategy and combination of T and L, fitnesses are averaged over the last 600 generations of 3
replicate simulations.

otherwise. U , the temperature, is constant at 0.005. Simulations are run until the fitness stops

increasing and stays constant for at least 600 generations. 3 replicate simulations are run for

each chemotactic strategy and combination of T and L.

2.3 Results

2.3.1 Effects of environment on the chemotactic performance

The framework described in Section 2.2 allows us to assess the performance of a chemotactic

response characterised by the response parameters α0, β , A, B and τ at a chosen combination

of attractant distribution parameters T and L. This framework can be used to optimise the

response parameters; any chemotactic strategy (adaptive, inverted, speculator) can be optimised

by applying appropriate constraints on A and B.

Figure 2.3 shows the optimal fitnesses of adaptive, inverted and speculator responses as a

function of T and L. Fitnesses are scaled by the fitness of a non-chemotaxing bacterium, whose

fitness is independent of T and L: a bacterium with a relative fitness of 4 therefore takes 4 times

less time to experience the same amount of attractant than a non-chemotaxing bacterium. In

all strategies, fitness increases with increasing T and decreasing L. As T increases, attractant

concentrations change more slowly, making it easier for bacteria to track attractant peaks. At

shorter L, fitness is higher because there are more attractant peaks and they are closer to one

another. This means that if a bacterium loses track of a peak, or a peak diminishes in amplitude

over time, the bacterium only needs to travel a short distance to reach another peak.
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We ensure that the total amount of attractant in the environment is independent of L. Al-

though the total amount of attractant is different at different times during the simulation, we

let the bacterium sample the environment long enough for the fluctuations to average out. The

total amount of attractant is also independent of T when averaged over time. The dependencies

of fitness on T and L in Figure 2.3 are therefore not caused by the total amount of attractant

varying with T or L.

2.3.2 Speculator response

In addition to the previously studied adaptive and inverted responses, we characterise a novel

chemotactic strategy. This “speculator” response, despite its seemingly paradoxical nature, is

more fit under all studied conditions than the inverted response, although less fit than the adap-

tive response. Interestingly, at T = 104, L = 20, the fitness of the speculator response is nearly

identical to the fitness of the adaptive response. To understand the mechanism of the specula-

tor response, we consider the optimal values of response parameters (Table 2.1). The lack of

perfect adaptation (optimal |A|> |B|) means that the bacterium will more often start to tumble

when the attractant concentration is high, as shown in green in Figure 2.2c; the low value of β

(Table 2.1) means that the bacterium will then continue tumbling, remaining in the region of

high attractant. Consequently, the speculator response, like the inverted response (Figure 2.2c,

blue curve), results in frequent long tumbles at high attractant concentrations. In contrast to the

inverted response, the double-lobe response function of the speculator response results in a tum-

bling rate sensitive to the rate of change of the attractant. The long memory of the speculator

response (large τ; Table 2.1) allows sensitivity to long-term trends; this sensitivity, combined

with the double-lobe response function, results in two important dynamical properties. Firstly,

the bacterium compares recent attractant concentrations with a long-term average, tumbling

more when the recent past is more favourable than the average, and therefore maintaining its

position in regions of higher attractant concentration. Secondly, the bacterium is able to sense

improving and worsening conditions at its current location. In particular, a decline in the at-

tractant concentration results in a decrease in α , allowing the bacterium to swim away from a

peak when conditions are changing for the worse. Swimming away leads to a further decrease

in α , setting a feedback loop in motion, resulting in continued swimming until a new optimum

is reached. The speculator response is therefore analogous to the behaviour of investors in fi-

nancial markets: when the current performance is lower than the average, or when investment

values are falling, speculators seek higher returns by abandoning their current position and in-

vesting elsewhere—hence the name “speculator” response. The behaviour of the speculator

response, compared with the adaptive and inverted responses, is illustrated in Video B.
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Figure 2.4: Curve-fit of our model of the speculator response (green curve) to the digitised data
of [1] (black circles). Adaptive (red), inverted (blue) and delayed inverted (purple) responses are
also fit to the data for comparison (the delayed inverted response is introduced in Chapter 3).
The speculator response is described by the following response parameters: α0 = 0.074s−1,
β = 0.034s−1, A = 1300mM−1s−1, B = −1000mM−1s−1 and τ = 71s. Attractant is added
at t = 190s (at a concentration of 0.001mM in correspondence to [1]) and removed at t =
1200s. The curve-fits were obtained by optimising the response parameters of the 4 responses to
minimise the least-squares fits between the model and the digitised data. The data are digitised
in MATLAB using the function imfindcircles [122].

Significantly, the time course of α in the speculator response closely matches the time

course of probability of tumbling in aerobically-grown R. sphaeroides (see Figure 2A in [1]).

Figure 2.4 shows a curve-fit of our model of the speculator response (green curve) to the

digitised data of [1] (black circles). The closeness of the fit provides strong evidence that

aerobically-grown R. sphaeroides uses the speculator response to respond to Na–succinate.

Experimental results show that aerobically-grown R. sphaeroides performs well in swarm

plates [1], demonstrating the efficacy of this response. Note that the speculator response pro-

vides a better fit to the data than the other responses. In particular, it predicts well how the

probability of tumbling adapts after attractant is removed—both the initial dip in probability

of tumbling and the adaptation that follows are predicted. We contacted the authors of [1] to

obtain more recent data for fitting but no more data are available on this type of response.
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2.3.3 Exploitation versus exploration in chemotaxis

As Figure 2.3 shows, at T = 104, L = 20, fitnesses of the adaptive and speculator responses

are very similar despite the different mechanisms behind their chemotactic strategies. To better

understand these strategies, we create a simple attractant distribution which consists of two

Gaussians (at positions 25 and 75 in a world with a length of 100) oscillating in amplitude out of

phase with each other: when one Gaussian is at full amplitude, the other has amplitude of zero.

Amplitude, period of oscillation and width of the Gaussians are roughly matched to T = 104,

L = 20 of the stochastic attractant distribution. For each of the two chemotactic strategies,

we take a bacterium optimised for T = 104, L = 20 of the stochastic attractant distribution

and simulate its movement in the virtual world with the two Gaussians. Figure 2.5 shows

the mean position of the bacteria as a function of θ , the phase of the oscillations. Between

θ = 0 and θ = π/4 the left Gaussian at position 25 is higher than the right Gaussian at position

75, but is decreasing. In the adaptive response (red curve), the bacterium is close to the top

of this Gaussian during this period. The bacterium shows little movement toward the right

Gaussian at position 75 until the right Gaussian is significantly higher i.e. θ > π/4. In the

speculator response (green curve), the bacterium cannot track the top of the Gaussian as well as

in the adaptive response, as evidenced by the large standard deviation around position 25 (green

shading). However, the bacterium more quickly adapts to the changing attractant levels, leaving

the declining left Gaussian and moving toward the growing right Gaussian sooner.

The strengths of the adaptive and speculator responses therefore lie in exploitation and

exploration, respectively. In the adaptive response, the bacterium can track the top of a peak

efficiently while in the speculator response, the bacterium is better at leaving the declining

peak and finding the increasing peak. The exploitation behaviour of the adaptive response is

analogous to a hill-climbing algorithm, which efficiently finds, but may get stuck at, a local

optimum. The exploration behaviour of the speculator response is more analogous to a Monte

Carlo search algorithm in that the bacterium may leave a peak in search of a higher peak at the

cost of its ability to track the peak top efficiently. This explains the trend in Figure 2.3: for

large L, the number of attractant peaks is small, and exploiting a given peak is more important

than exploring new peaks. Under these conditions, the adaptive response is significantly more

effective than the speculator response. At short L, there are multiple peaks in the environment,

each of which has a different amplitude. Under such conditions, the exploration behaviour

of the speculator response allows the bacterium to locate higher peaks, while the exploitation

behaviour of the adaptive response may lead to the bacterium tracking a suboptimal peak. At

T = 104, L = 20, the two strategies are approximately equally effective, giving rise to very
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Figure 2.5: Mean position of bacteria performing adaptive (red curve) or speculator (green
curve) response as a function of θ , the phase of the oscillations. Shading shows the standard
deviation of the position. The Gaussians are centred at positions 25 (dashed gold line) and 75
(dashed turquoise line) and have a standard deviation of 3. Amplitudes of the Gaussians (not to
scale, maximum amplitude is 1) are shown as a function of θ in the bottom part of the figure
for the Gaussian at position 25 (gold curve) and 75 (turquoise curve). The Gaussians oscillate
with a period 2πT , with T = 104.
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similar fitnesses (Figure 2.3).

2.3.4 Optimal response parameters and their dependence on T and L

2.3.4.1 Adaptive response

We next consider the optimal values of response parameters and how they depend on T and

L. In the adaptive response, τ (the memory length) is very short (Table 2.1), allowing the bac-

terium to quickly adjust to small displacements from attractant optima. β , the rate at which the

bacterium stops tumbling, is quite large, corresponding to short-lasting tumbles characteristic

of chemotaxis in E. coli [52].

High sensitivity (large |A| and |B|) is necessary for the bacterium to respond to small dif-

ferences in attractant concentration characteristic of small displacements from the top of an

attractant peak. High sensitivity is responsible for the high α when the attractant is removed

at t = 350 in Figure 2.2c (red curve). Interestingly, optimal sensitivity is lower when T in-

creases and L decreases (Figure 2.6); under these conditions, there are multiple peaks in the

environment, each with a different amplitude. Lower sensitivity allows the bacterium to jump

between peaks, decreasing the likelihood of getting stuck on a suboptimal peak. However, this

is only beneficial at long T , when the peaks are stable over time. What is the source of the

large standard deviations in Figure 2.6? First, let us note that the same fitnesses were reached

in the 3 replicate simulations for a given combination of T and L, and fitnesses were stable

over many generations (data not shown), suggesting two possible reasons for the large standard

deviations: first, fitness may be unaffected by large variations in sensitivity. Second, a different

optimal value of sensitivity in one of the replicate simulations could be compensated by a dif-

ferent optimal value of another response parameter in the same replicate. Further analysis could

distinguish between these possibilities. These arguments hold for Figures in Section 2.3.4.2 as

well, unless noted otherwise.

Optimal α0, the tumbling rate in the absence of attractant (or under constant attractant in

case of perfect adaptation), is very low in all strategies, as is evident from Figure 2.2c and Ta-

ble 2.1. Low α0 enables bacteria to run persistently in order to find regions with more favourable

conditions more quickly. The near-zero value of α0 removes the possibility of α going below

α0, eliminating the response to increasing attractant in the adaptive response (Figure 2.2c, red

curve, t = 50).

2.3.4.2 Inverted response

In the inverted response, the bacterium tumbles more at higher concentrations of attractant

(Figure 2.2c, blue curve). τ is longer than for the adaptive response (Table 2.1), allowing the
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Figure 2.6: Sensitivity as a
function of T and L in the
adaptive response (note the
log scale). Each data point
is an average over the last
600 generations of 3 repli-
cate simulations. Colour
corresponds to the value of
sensitivity (see the colour
bar). The error bars show
the standard deviation of
the mean; they are asym-
metrical because the data
are plotted on a log scale.

Figure 2.7: τ as a function
of T and L in the inverted
response. Each data point
is an average over the last
600 generations of 3 repli-
cate simulations. Colour
corresponds to the value of
τ (see the colour bar). The
error bars show the standard
deviation of the mean.

bacterium to integrate over short-term fluctuations. In both inverted and adaptive responses

(Figures 2.7 and 2.8), optimal τ is lower when the attractant distribution varies rapidly in time

(short T ) or space (short L), otherwise bacteria respond to conditions that are no longer relevant.

This is consistent with theoretical results showing that optimal adaptation time decreases for

increasingly steep gradients [78, 79].

In both inverted and speculator responses, β is much lower than in the adaptive response

(Table 2.1), resulting in significantly longer tumbles. This is central to the strategies, as it is the

persistence of position when tumbling that allows bacteria to stay in regions of high attractant

concentration. Furthermore, optimal β increases with increasing T in both inverted (Figure 2.9)

and speculator (Figure 2.10) response, causing bacteria to be less persistent in maintaining

their position when the attractant peaks are less stable in time. The peak at T = 100, L = 100
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Figure 2.8: τ as a function
of T and L in the adaptive
response. See the caption of
Figure 2.7 for more details.

Figure 2.9: β as a func-
tion of T and L in the in-
verted response (note the
log scale). See the cap-
tion of Figure 2.6 for more
details.

in the inverted response is due to β reaching a higher optimum value in one of the replicate

simulations (the fitness is the same as in the two remaining simulations). Interestingly, A is

also higher in the same replicate simulation. Higher A leads to greater deviations of α from

α0. Parallel increases in α and β likely leave α

α+β
, the steady-state probability of tumbling

(Equation (2.7)), unchanged. The steady-state probability of tumbling is therefore conserved

in the 3 replicate simulations, providing an example of a compensatory change. The same

reasoning likely applies to the peak at T = 103, L = 100 in the speculator response as both β

and A are higher in one of the replicate simulations.

The sensitivity is lower than in the adaptive response (Table 2.1), in agreement with simple

models showing that the inverted response is optimised by lower sensitivity [113]. Sensitivity

needs to be tailored to the range of attractant concentrations the bacterium experiences: if it

is too low, the bacterium will run past high concentrations of attractant; if it is too high, the



2.4. Discussion 39

Figure 2.10: β as a function
of T and L in the speculator
response. See the caption of
Figure 2.7 for more details.

bacterium will tumble at low concentrations of attractant, never reaching higher concentrations.

2.4 Discussion

In this work we describe a new chemotactic strategy, termed the speculator response, in which

the bacterium compares the current attractant concentration with a long-term average; if the

current concentration is higher than the long-term average, the bacterium tumbles persistently

to maintain its position. On the other hand, declines in the current concentration will increase

the probability that the bacterium will swim away to a higher peak. By considering stochastic

attractant distributions, we show that under slowly-changing but spatially complex attractant

concentrations (large T , small L), the speculator response is almost as efficient at co-localising

with attractant as the adaptive response of E. coli (Figure 2.3). While the adaptive response

achieves high fitness by accurately tracking the top of an attractant peak, the speculator re-

sponse enables the bacterium to explore its environment and find higher peaks more efficiently

(Figure 2.5).

The speculator response closely matches the response observed in wild-type, aerobically-

grown R. sphaeroides (Figure 2.4). The optimised response parameters from our simulations

are in arbitrary units, and cannot be directly compared with those obtained by the fit to the

wild-type response (Figure 2.4). Interestingly, however, the ratio of B to A which quantifies the

extent of departure from perfect adaptation (B/A = −1 corresponds to perfect adaptation) is

similar between the optimised values obtained from the simulations and the response observed

in aerobically-grown R. sphaeroides (−0.84 and −0.82, respectively). Furthermore, we can

acquire a rough estimate of the ratio of τS/τA (where τS and τA are the values of τ in the specu-

lator and adaptive responses) by comparing the values of τ in aerobically-grown R. sphaeroides
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(Figure 2.4) and wild-type E. coli [54]. This ratio (71/1 = 71) is of similar order of magnitude

to the ratio for the optimised simulated responses (43/0.20 = 215), despite the multitude of

differences between wild-type R. sphaeroides and E. coli.

The optimised adaptive response possesses high sensitivity (large |A| and |B|; Table 2.1)

consistent with experimental results from E. coli [123]. Furthermore, β , the rate at which the

bacterium stops tumbling, is high, which is in line with the short tumbles observed in real bacte-

ria [52]. In contrast to real bacteria, the optimised bacteria have a lower α0, and thus tumble less

than real bacteria when attractant concentration is increasing (Figure 2.2c, red curve, t = 50).

This may be an artefact of modelling chemotaxis in a one-dimensional environment: in a three-

dimensional environment, tumbling may assist the bacterium in finding even steeper paths to

attractant optima. We modelled chemotaxis as a one-dimensional process because of com-

putational efficiency; the bacterium would take longer to sample a two- or three-dimensional

environment sufficiently.

In this work we were by necessity confined to a relatively small range of T and L; other

conditions might exist (such as larger T and smaller L; see Figure 2.3) that would favour the

speculator response even more. Furthermore, our model does not take into account the motility-

associated energy costs of the different chemotactic strategies. For instance, R. sphaeroides

does not actively tumble, but rather stops running and lets Brownian motion generate the re-

orientation, reducing the costs of strategies that involve longer tumbles [124]. The speculator

response therefore might have emerged partly because R. sphaeroides uses rotational diffusion

to achieve tumbling. Alternatively, rotational diffusion might have emerged in response to the

bacterium using a strategy that involves long tumbles. It is unclear how relevant the energy

costs of tumbling are as early calculations suggested the energy costs of chemotaxis to be neg-

ligible [125]. However, later research showed that while this is true for enteric bacteria, the

energy costs are higher for marine bacteria because of their smaller size and higher swimming

speed [126].

Our approach differs from that of other studies in that we consider realistic attractant dis-

tributions and extended tumbling times. The latter is essential for the speculator response to

work as it allows bacteria to maintain their position in regions of high attractant concentra-

tion. Previous studies [127, 121, 128] modelled tumbles as instantaneous after chemotaxis in E.

coli [52], however, experimental evidence from other bacterial species shows longer tumbling

times [129, 85]. Our results add to the growing body of evidence that extended tumbles allow

for emergence of other modes of chemotaxis [112, 113, 130].

Most studies to date considered chemotaxis in response to step functions or simple gradi-
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ents [118]. While this is important for our understanding of the basic mechanisms of chemo-

taxis, we should recognise that chemotactic strategies were inevitably shaped by the environ-

ments the bacteria inhabited. For example, studies in marine bacteria unearthed specific adapta-

tions to marine environments [119, 116, 117], highlighting the need to study chemotaxis in the

context of realistic attractant distributions. Here, we propose a model of a stochastic attractant

distribution which allows us to compare the performance of various chemotactic strategies un-

der different environments and study how optimal properties of chemotactic responses change

as a function of environmental conditions. This can also help us characterise the environmental

conditions based on the strategies that have evolved. Further characterisation of natural environ-

ments [115] will allow theorists to construct more detailed attractant distributions and advances

in microfluidics technologies will enable these environments to be reconstructed in laboratory

settings [118].
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Chapter 3

Response sensitivity as a driver for the

evolution of chemotaxis

3.1 Introduction

The chemotactic response of present-day E. coli is very sensitive: an increase in receptor oc-

cupancy of 0.1–0.2% (corresponding to the binding of a single attractant molecule) gives rise

to a transient 10% decrease in the tumbling rate [54]. This response sensitivity is achieved by

signal amplification at the level of receptors [123] and the flagellar motor [131]. As predicted

by models [132, 133] and later confirmed by experiments [134], receptors amplify the signal

by interacting with one another in receptor clusters. Furthermore, CheB is likely to play a

role [135] as response sensitivity is severely reduced in CheB mutants [123]. More recently,

CheZ has been proposed as an alternative source of high response sensitivity [136]. Below, we

refer to response sensitivity simply as sensitivity.

In Chapter 2 we showed that the optimal sensitivity is low (high) for the inverted (adap-

tive) response (Table 2.1). Consistent with our results, Soyer and Goldstein [113] showed that

under low sensitivity, the inverted response is fitter than the adaptive response and under high

sensitivity, the inverted response is less fit than the adaptive response. Based on these results,

they formulated a scenario for the evolution of inverted and adaptive responses. As discussed

above, the level of sensitivity depends on the molecular machinery. Crucially, Soyer and Gold-

stein argued that this machinery might be expected to improve over evolutionary time, enabling

higher sensitivities. This would suggest that the inverted response evolved while sensitivity was

still low, followed by the evolution of the adaptive response as sensitivity increased [113]. This

scenario is especially attractive because the signalling pathway necessary to encode the inverted

response may be simpler than that of the adaptive response [112]. In fact, the inverted response

may be possible even without a dedicated signalling pathway by coupling the chemotactic re-

sponse to cell metabolism: increased tumbling could be achieved by a metabolite binding to the
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flagellar motor [114, 112, 113]; the concentration of the metabolite would serve as a measure

of the environmental nutrient levels.

The scenario of Soyer and Goldstein presents an interesting problem. In the inverted (adap-

tive) response, the bacterium responds to a step increase in attractant concentration by a per-

sistent increase (transient decrease) in tumbling; the evolutionary transition from inverted to

adaptive response would therefore require a switch from increased to decreased tumbling (a

“sign flip”) and a change of behaviour from persistent to transient. Could a single mutation

achieve this? Alternatively, if multiple mutations are required, would the mutants be capable

of co-localising with attractant? It has been shown that a single mutation in the cheU gene of

S. typhimurium can achieve a sign flip, but the change in tumbling is transient [93]. Modelling

work suggests that the amount of a signalling protein determines whether the dynamics of the

protein concentration is persistent or transient [137] but additional mechanisms would likely be

required to achieve sign flips.

How could the sensitivity-driven transitions between chemotactic responses be achieved?

Soyer and Goldstein only considered inverted and adaptive responses; what is the role of the

speculator response in the evolution of chemotaxis? In order to study these questions, we relax

the response-specific constraints on the values of A and B. We find that two types of inverted

response arise under low sensitivities: A > 0, B ≈ 0 and B > 0, A ≈ 0. In the latter case, the

adaptive response (A < 0, B > 0) arises readily at higher sensitivities as the transition only

involves a decrease in A. In the former case, we observe a transition to the speculator response

(A > 0, B < 0) as this only requires a decrease in B.

Interestingly, nearly-perfect adaptation emerges in the adaptive response even without the

constraint for perfect adaptation. Further analysis shows that perfect adaptation is optimal for

the adaptive response; perturbing the adaptive response away from perfect adaptation by in-

creasing the area of the positive or negative lobe leads to decreases in fitness.

3.2 Methods

We define sensitivity as σ = max(|A|, |B|). To model the constraints on sensitivity due to the

limited amplification capabilities of the molecular machinery, we introduce σM(g), the maxi-

mum value σ can take at generation g. We run long simulations (60000 generations) in which

σM is initially low and constant (σM(g) = 4 for 1 < g < 10000) and subsequently increases

linearly (such that σM(g) = 100 at g = 60000). The initial value of σM = 4 corresponds to the

typical optimal value of A in the inverted response (data not shown; Table 2.1 shows the range

of the optimal value of A at T = 103, L = 50).



3.3. Results 45

Response-specific constraints on A and B are relaxed to allow A and B to evolve freely,

permitting transitions between responses as maximum sensitivity increases. To allow a= {A,B}

to mutate from a positive to a negative value (and vice versa) while still mutating it on a log

scale, we define a threshold h = exp(−1). When a is positive (negative) and it is mutated

below h (above −h), a becomes negative (positive). Specifically, amut, the mutated value of a,

is calculated as amut = sgn(alog + r)exp(|alog + r|+ lnh) where alog = sgna(ln |a|− lnh) and r

is a random number sampled from a uniform distribution between −0.2 and 0.2.

Apart from the changes discussed above, the optimisation proceeds as in Chapter 2; see

the first paragraph of Section 2.2.1 for an overview.

3.3 Results

Unless otherwise noted, the results reported in this Chapter are for T = 103, L = 50; results for

other combinations of T and L are qualitatively similar. “Simulations with unconstrained sensi-

tivity” refer to the optimisations (under T = 103, L = 50) described in Chapter 2 (Section 2.3).

3.3.1 Transitions between responses due to changing response sensitivity

Figure 3.1 shows fitnesses and values of A, B and B/A as a function of evolutionary time

for 3 replicate simulations (gold, turquoise and olive curves). In the “gold” and “turquoise”

simulations, B equilibrates close to σM (dotted curve) during the low maximum sensitivity

regime, while A becomes negative and smaller in magnitude than B. As σM(g) increases (from

g = 10000 onwards), we observe a transition to the adaptive response: B and A increase in

magnitude, keeping their signs, and their ratio approaches−1, indicating nearly perfect adapta-

tion. In the “olive” simulation, A > 0 and B is negative and smaller in magnitude than A during

the low σM. At higher σM, speculator response emerges as A and B increase in magnitude

and their ratio approaches −0.82, close to the range of the ratio observed in simulations with

unconstrained sensitivity (−0.85 to −0.83; see Table 2.1).

While it is clear that adaptive and speculator responses arise under high maximum sensi-

tivities, it is less apparent what the chemotactic strategies are of the responses observed at low

σM. To better understand these responses, we plot their response functions (Figure 3.2a) and

time-courses of α in response to attractant step functions (Figure 3.2b). Since in all 3 responses

the optimal values of A and B are different from 0 and have opposite signs, all response func-

tions are double-lobe (in the olive simulation, the negative lobe is extremely shallow due to the

response function being “stretched” by a long τ). However, the areas of the positive lobes far

outweigh the areas of the negative lobes. In the gold and turquoise simulations, this is due to

B > |A| (positive B encodes the positive lobe), while in the olive response it is due to A > |B|
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Figure 3.1: Fitnesses and values of A, B and B/A as a function of evolutionary time in 3 sim-
ulations (gold, turquoise, and olive curves). Note that A and B are plotted on a log scale. The
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−σM(g) and σM(g). The vertical dotted line running across all plots represents the generation
in which σM(g) starts increasing. The horizontal dotted line in the plot of B/A represents the
value of B/A corresponding to perfect adaptation.
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(positive A encodes the positive lobe). Because the response functions are dominated by the

positive lobes, the modulation of α in the 3 responses is qualitatively similar to that of the in-

verted response: the bacterium tumbles more at higher concentrations of attractant, persisting

in attractant-rich regions by virtue of extended tumbling.

The difference between the inverted responses encoded by positive A and positive B is that

in the former, the response function gives the most recently experienced attractant concentra-

tions the most weight (R(t) is maximal at t = 0), while in the latter, the most weight is given to

attractant concentrations experienced of order τ ago (R(t) is maximal at t = τ). We therefore

refer to the inverted response encoded by positive B as the delayed inverted response.

To investigate the fitness of the delayed inverted response, we optimised it at different com-

binations of T and L by constraining A and B such that B > 0 and A = 0. Figure 3.3 shows the

fitness of the delayed inverted response (purple surface) as a function of T and L; fitness of the

inverted response (blue surface; identical to the blue surface in Figure 2.3) is superimposed for

comparison. The fitnesses of inverted and delayed inverted responses are very similar with de-

layed inverted response being slightly more fit. Although the difference is small, it is likely the

reason why the delayed inverted response emerges more readily at low maximum sensitivities.

Altogether, we ran 15 simulations with constrained maximum sensitivity (3 replicate simula-

tions for each of 5 different combinations of T and L). In 13 simulations, the delayed inverted

response arose at low maximum sensitivity, followed by a transition to the adaptive response

at higher maximum sensitivities. In the remaining 2 simulations, the inverted response arose at

low maximum sensitivity, leading to the emergence of the speculator response at higher maxi-

mum sensitivities. The fact that the speculator response only emerged in 2 out of 15 simulations

suggests that it is less evolvable.

Note that we use a particular functional form for inverted and delayed inverted responses,

given by Equation 2.4. However, other functional forms are possible and these should allow

the types of transitions reported here, as long as they distinguish between “fast” and “delayed”

inverted responses. In other words, despite the use of a particular functional form, our results

should hold more generally.

3.3.2 Dependence of fitness and optimal response parameters on sensitivity

To better understand how sensitivity affects the performance and optimal values of response

parameters in different chemotactic strategies, we optimised each strategy under a range of

different fixed values of σ such that B = σ , A = −B in the adaptive response, A = σ , B = 0

in the inverted response, B = σ , A = 0 in the delayed inverted response, and A = σ , B is

unconstrained in the speculator response.
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Figure 3.2: R(t) (top) and α(t) (bottom) for responses from generation 10000 of the 3 replicate
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Figure 3.3: Fitness of delayed
inverted (purple) and inverted
(blue) response as a function of
T and L. For each chemotac-
tic strategy and combination of T
and L, fitnesses are averaged over
the last 600 generations of 3 repli-
cate simulations.

Figures 3.4a, 3.4c and 3.4d show the fitnesses and optimal values of β and τ as a function

of sensitivity for the different chemotactic strategies. Consistent with [113], inverted (blue)

and delayed inverted (purple) responses are fitter than the adaptive response (red) under low

sensitivity and less fit under high sensitivity. For 10 < σ < 28, fitnesses of delayed inverted and

adaptive responses are similar; interestingly, optimal values of β are very similar for the two

responses at these sensitivities, and optimal values of τ are more similar for σ ≤ 28 than for

higher sensitivities. Importantly, similar optimal values of these parameters at similar values

of sensitivity would make the transition between delayed inverted and adaptive responses more

easily achievable.

At σ = 1, fitnesses of inverted and speculator responses are similar; above this sensitivity,

the speculator response becomes the fitter strategy. Optimal β and τ are similar for the two

responses at σ = 1, supporting the idea of an evolutionary transition between inverted and

speculator responses near this sensitivity. As Figure 3.4e shows, the ratio B/A in the speculator

response is closer to that observed in simulations with unconstrained sensitivity (dotted line)

for σ > 1. At σ = 1, the magnitude of B/A is greater, meaning that the response function is

dominated by the positive lobe encoded by positive A, as in the inverted response. Combined

with the similar optimal values of β and τ and similar fitnesses, this means that the speculator

response is in fact indistinguishable from the inverted response at σ = 1.

For a given strategy, each fitness value in Figure 3.4b was calculated by scaling the cor-

responding fitness value in Figure 3.4a by the maximal fitness obtained for that strategy in

simulations with unconstrained sensitivity. A relative fitness of 1 means that the fitness is iden-
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tical to the maximal fitness. At σ = 100, the fitness of the adaptive response is at 90% of the

maximal fitness, meaning that above a certain sensitivity, further increases in sensitivity only

confer small fitness improvements, suggesting a flat fitness landscape. This likely explains why

the standard deviation of sensitivity is extremely large in simulations with unconstrained fitness

(Figure 2.6). In inverted and delayed inverted responses, fitnesses are very close to the maximal

fitness for σ ≤ 10, consistent with optimal sensitivities of 3.6 and 4.6 for the two responses

obtained from simulations with unconstrained sensitivity. Interestingly, in contrast to [113],

fitnesses do not deteriorate with increasing sensitivity, although they are slightly lower. We

propose an explanation below.

We now consider the optimal values of response parameters in the different responses and

how they depend on sensitivity. In the adaptive response, optimal β decreases with decreas-

ing sensitivity, likely keeping the steady-state probabilities of tumbling in check: since the

sensitivities studied here are lower than optimal sensitivities in simulations with unconstrained

sensitivity (Table 2.1), the deviations of α from α0 are smaller, leading to lower steady-state

probabilities of tumbling ( α

α+β
; see Equation (2.7)). However, because β decreases in parallel

to α , the steady-state probabilities of tumbling likely do not change. Keeping the steady-state

probabilities of tumbling conserved is in the interest of the bacterium; when the probabilities

are too low, the bacterium cannot respond to small changes in attractant concentration. This is

particularly detrimental when the attractant concentration is decreasing: the concentration has

to decrease sufficiently for a running bacterium to detect the decrease and respond by tumbling.

In the inverted response, optimal β increases with increasing sensitivity. Increasing sensi-

tivity leads to increasing steady-state probabilities of tumbling, resulting in the bacterium tum-

bling persistently at low attractant concentrations, preventing it from reaching higher attractant

concentrations. However, as β increases in parallel to sensitivity, the steady-state probabilities

of tumbling are unchanged. This is likely the reason why increasing sensitivity does not di-

minish fitness. Optimal τ is higher for the inverted response compared to the delayed inverted

response. This is because the positive lobe of the delayed inverted response reaches farther into

the past, requiring a shorter τ .

3.3.3 Perfect adaptation

In the simulations with constrained maximum sensitivity (Section 3.3.1), the ratio B/A con-

verges to a value close to, but lower than, −1 in the adaptive response (Figure 3.1), indicating

nearly-perfect adaptation. Why is nearly-perfect adaptation optimal? As explained above, when

sensitivity is limited, the bacterium cannot respond to small decreases in attractant concentra-

tion as the concentration has to decrease sufficiently for the bacterium to detect the decrease
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Figure 3.5: Fitness (a) and τ (b) as a function of B/A in the adaptive response. Each data point
is an average over the last 700 generations of 3 replicate simulations. The error bars show the
standard deviation of the mean.

and respond by tumbling. B/A < −1 means that |A| < B which in turn means that the area of

the positive lobe encoded by positive B is greater than the area of the negative lobe encoded by

negative A. The response is therefore slightly biased toward tumbling, allowing the bacterium

to terminate a run sooner when attractant concentration starts decreasing. Nearly-perfect adap-

tation is therefore optimal in this case. However, the effect is likely sensitivity-dependent: when

sensitivity is higher, the bacterium can respond to small changes in attractant concentration and

perfect adaptation may be optimal. This could be tested by optimising the adaptive response

under different fixed values of maximum sensitivity and monitoring how the optimal value of

the ratio B/A changes with maximum sensitivity (A and B would not be constrained in these

simulations apart from the constrained sensitivity).

What are the effects of shifting the adaptive response away from perfect adaptation when

sensitivity is not constrained? To answer this question, we optimised the adaptive response

under different ratios of B/A; the magnitudes of A and B were free to evolve as long as their

ratio was constant. Figure 3.5a shows the fitness of the adaptive response as a function of the

ratio B/A. Notably, fitnesses are higher for B/A <−1 than for B/A >−1. As explained above,

at B/A < −1, the response function is dominated by the positive lobe encoded by positive B;

in fact, the higher the ratio B/A, the more the adaptive response resembles the delayed inverted

response. This is further supported by the fact that at B/A<−1, optimal τ is greater than for the

perfect adaptation case (Figure 3.5b), suggesting a shift toward the delayed inverted response.

At B/A > −1, the negative lobe encoded by negative A dominates and the bacterium is

therefore biased toward running. This is not problematic as long as the experienced attractant

concentration is increasing, as in this case, it is in the interest of the bacterium to suppress
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tumbles and continue running in the favourable direction. However, the bias becomes an issue

when the experienced attractant is decreasing: because of the bias, the bacterium does not

tumble until the decrease in attractant concentration is sufficiently large to override the bias. As

Figure 3.5a illustrates, this behaviour is less fit than the response for B/A <−1.

In the above analysis, the adaptive response was optimised for a particular value of B/A.

How is the response fitness affected when B/A is perturbed in a response optimised under

B/A = −1? As Figure 3.6 shows, perturbations lead to decreases in fitness. However, for

T = 100, L = 100 (Figure 3.6d), fitness decreases much more steeply in response to perturba-

tions than for other combinations of T and L; interestingly, T = 100, L = 100 happens to be

the combination of T and L for which the lowest fitnesses were reported in simulations with

unconstrained sensitivity (Figure 2.3). Furthermore, fitnesses are only higher for B/A < −1

compared to B/A >−1 (i.e. the pattern seen in Figure 3.5a) for T = 104, L = 20 (Figure 3.6b)

and T = 103, L = 50 (Figure 3.6c); for the remaining combinations of T and L, decreases in fit-

nesses are nearly symmetrical for B/A<−1 and B/A>−1. Further analysis would be required

to understand the significance of these results.

3.4 Discussion

We propose a scenario for the evolution of the adaptive response of E. coli and the specula-

tor response of R. sphaeroides. In this scenario, the response sensitivity is the main driver

of chemotaxis evolution. In line with previous studies [113] we find that adaptive and spec-

ulator responses are fitter than delayed inverted and inverted responses under high sensitiv-

ity (Figure 3.4a). Importantly, high sensitivity was reported for both E. coli [123] and R.

sphaeroides [102], and is also likely in other bacterial species given that receptor clustering, one

of the major determinants of high sensitivity, appears to be a wide-spread phenomenon [101].

However, the molecular machinery that enables high sensitivity in present-day bacteria was ei-

ther lacking or much less advanced in ancient bacteria, suggesting lower levels of sensitivity.

Our results show that at low sensitivity, delayed inverted and inverted responses are fitter than

the adaptive and speculator responses (Figure 3.4a). Consistently, we observed in our simula-

tions the emergence of delayed inverted or inverted response under low sensitivity, followed by

a transition to the adaptive or speculator response when sensitivity improved (Figure 3.1).

What evidence is there to support the emergence of delayed inverted and inverted re-

sponses early on during the evolution of chemotaxis? Previous studies showed that minimal

pathways encoding these two responses are simpler than the pathway of the adaptive response

of E. coli [112], suggesting that delayed inverted and inverted response may be more accessi-
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Figure 3.6: Fitness as a function of ε = B/A in adaptive response (red curves) optimised under
ε =−1 for a) T = 104, L = 100, b) T = 104, L = 20, c) T = 103, L = 50, d) T = 100, L = 100,
and e) T = 100, L = 20. The response parameters for the adaptive responses optimised under
ε =−1 are: α0 = 0.016, β = 38, A =−290000, τ = 0.20 for T = 104, L = 100; α0 = 0.0084,
β = 54, A = −1500, τ = 0.020 for T = 104, L = 20; α0 = 0.0094, β = 45, A = −3200,
τ = 0.050 for T = 103, L = 50; α0 = 0.0048, β = 86, A = −320000, τ = 0.010 for T = 100,
L= 100; and α0 = 0.0026, β = 61, A=−280000, τ = 0.063 for T = 100, L= 20. In the present
analysis, given a particular combination of T and L and value of ε , Aperturbed and Bperturbed are
calculated from B and ε as Aperturbed =−B

(
1− ε+1

ε−1

)
and Bperturbed = B

(
1+ ε+1

ε−1

)
. Fitness of a

response characterised by α0, β , Aperturbed, Bperturbed and τ is calculated as an average over 100
bacteria rather than 10 as in Chapter 2 (see Section 2.2.5). The error bars show the standard
deviation of the mean.
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ble by evolution than the adaptive response. Strikingly, the two responses could be achieved

even without a dedicated pathway: a metabolite, or an attractant molecule taken up by the

cell, could bind the flagellar motor directly, increasing tumbling [112, 114]. Fumarate, an

intermediate metabolite in the citric acid cycle, has been shown to interact with the flagellar

motor [39, 40], suggesting metabolism may regulate chemotaxis. Cellular metabolism likely

occurs at timescales that are longer than timescales at which attractant concentration outside

the cell changes [83], favouring the delayed inverted response which responds maximally to

attractant concentrations experienced of order τ ago. Interestingly, optimal τ is higher for the

delayed inverted response than for the adaptive response (Figure 3.4d), providing further sup-

port that the delayed inverted response could sense the metabolic state of the cell, while the

adaptive response is optimised for sensing outside concentrations of attractant. Some attrac-

tants were found to be taken up by the cell [138]. Depending on the rates of transport across

the cellular membrane, the direct binding of these attractants to the flagellar motor could bring

about the inverted response which responds maximally to attractant concentrations experienced

at present.

Delayed inverted or inverted response could provide a functional, although basic, chemo-

tactic behaviour in ancient bacteria through sensing of the metabolic state of the cell or attractant

uptake and binding to the flagellar motor. Once a basic strategy was in place, dedicated recep-

tor and signalling proteins could be recruited that would encode the predecessor of present-day

adaptive or speculator response. Possessing dedicated receptors could be advantageous as it

might allow bacteria to distinguish between, and fine-tune their responses toward, different at-

tractants. However, ancient receptors would only provide limited response sensitivities and the

receptor-mediated responses would thus likely be of the inverted or delayed inverted type. Once

the molecular machinery improved sufficiently, enabling higher sensitivity, the fitnesses of the

adaptive and speculator responses would rise above those of the delayed inverted and inverted

responses, and the adaptive or speculator response would become the preferred chemotactic

strategy.

Evidence suggests that metabolic sensing could still be important in present-day bacteria.

The most striking example is A. brasilense where metabolism is required for chemotaxis to

most attractants [41]. In R. sphaeroides, chemotaxis to sugars requires metabolism [139]. A

number of bacteria were found to possess cytoplasmic receptors [8]; in R. sphaeroides they

were shown to cluster in a manner similar to that of the cell membrane receptors [104]. The

cytoplasmic receptors could sense the metabolic state of the cell [103] and could also sense

the concentrations of attractants that are taken up by the cell. Furthermore, some bacteria
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harbour multiple chemotactic pathways [96]; in R. sphaeroides, some of these are targeted

to the cytoplasm [98] and regulated independently [140], suggesting that they may sense the

metabolic state of the cell through the cytoplasmic receptors. Last, enzymes involved in cellular

metabolism were shown to interact with the flagellar motor [141, 142].

As pointed out by [114], the idea of metabolism-dependent chemotaxis is becoming fash-

ionable again. Our results illustrate a possible role for metabolism-dependent chemotaxis in the

evolution of chemotactic behaviour.



Chapter 4

Conclusion

The aim of this work was to investigate the observed diversity of chemotactic behaviours and

identify evolutionary pressures that could have shaped chemotaxis.

In Chapter 2, we report a new type of chemotactic response termed the “speculator” re-

sponse. We present evidence that this is the response used by wild-type, aerobically-grown

R. sphaeroides. In this response, bacteria compare the current attractant concentration with a

long-term average: when the current concentration is higher than the long-term average or is in-

creasing, bacteria are likely to remain stationary by virtue of persistent tumbling. On the other

hand, when the current concentration is lower than the long-term average, bacteria are more

prone to running away in search of regions with higher attractant concentration.

The above results were obtained using a model of a stochastic attractant distribution; ad-

justing the manner in which attractant concentrations vary in time and space allows us to study

the performance of the speculator response and the previously reported adaptive and inverted

responses under different environments similar to those one might expect to find in nature.

Our results show that all studied responses are fitter than a non-chemotaxing bacterium. The

speculator response performs better than the inverted response regardless of the details of the

attractant distribution. The adaptive response is fitter than the speculator response under most

environments; however, when the attractant distribution is slowly-changing but spatially com-

plex, fitnesses of adaptive and speculator responses are very similar. Further analysis shows

that the adaptive response allows bacteria to track the top of an attractant peak efficiently (“ex-

ploitation”) but bacteria may get stuck at local maxima, whereas the speculator response allows

bacteria to leave a peak when it is low or decreasing in amplitude (“exploration”) at the cost of

the ability to closely track the top of the peak. Together, these results suggest that responses

other than the adaptive response of E. coli allow bacteria to co-localise with attractant in a wide

variety of environments. Furthermore, there are environments which favour certain types of re-

sponses over others, suggesting that the diversity of chemotactic behaviours observed in nature
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could stem from different bacteria inhabiting distinct environments. Importantly, characterisa-

tion of natural environments will allow these predictions to be tested experimentally.

It is possible that the speculator response is fitter than the adaptive response in environ-

ments that are even more spatially complex than the environments studied in this work. This

could be tested by including higher-order modes in the attractant distribution and determining

the fitnesses of the two responses under a long correlation length. The differential energetic

costs of active and passive tumbling likely also have an effect on response fitness. While in E.

coli tumbling is an active process brought about by CW rotation of the flagellar motor, tumbling

is passive in R. sphaeroides: the motor is stationary and the random re-orientation of the cell

is generated by Brownian motion, suggesting a lower cost of tumbling in R. sphaeroides [124].

It would be interesting to incorporate tumbling costs in our model, which might lead to further

increases in the fitness of the speculator response relative to the fitness of the adaptive response.

Our model is particularly amenable to studying the evolution of bet-hedging in the con-

text of bacterial chemotaxis. Response fitness is currently calculated by subjecting 10 bacteria

described by identical sets of response parameters to 10 different realisations of the stochastic

attractant distribution. Rather than optimising response parameters directly, means and vari-

ances of individual parameters could be optimised instead. For each of the 10 bacteria, specific

values of response parameters would be determined by sampling from distributions described

by the associated means and variances. If the optimised variance of a particular parameter is

large, it suggests that it is advantageous for the responses of the 10 bacteria to differ in the val-

ues of that parameter, indicating bet-hedging. This would allow us to explore various questions

related to bet-hedging in bacterial chemotaxis: do some chemotactic strategies benefit from bet-

hedging more than others? Which response parameters are subject to bet-hedging? Do some

environments promote the evolution of bet-hedging more than others?

In Chapter 3, we propose possible routes for the evolution of adaptive and speculator re-

sponses. This evolution is driven by increases in response sensitivity that would occur over long

evolutionary timescales [113]: response sensitivity is a function of the molecular machinery

which likely improved over evolutionary time, giving rise to the high response sensitivity seen

in present-day E. coli [65] and likely also other bacteria [101]. This process was simulated by

constraining the maximum sensitivity and slowly raising the maximum. Under a low maximum

sensitivity, inverted or delayed inverted response emerges. At higher maximum sensitivities,

transitions from inverted to speculator and from delayed inverted to adaptive response are ob-

served. At intermediate sensitivities, optimal response parameters for inverted/speculator and

delayed inverted/adaptive responses are similar, aiding the transitions between the responses.
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The notion that inverted-type responses emerged first during the evolution of chemotaxis is

especially attractive because these responses could be achieved without a dedicated signalling

pathway: an attractant molecule or a metabolite could bind the flagellar motor directly and in-

crease the probability of CW rotation, thereby increasing the probability of tumbling. Together,

these results suggest that response sensitivity could have acted as a driver for the evolution of

various chemotactic strategies observed in present-day bacteria.

Interestingly, when the transition to the adaptive response occurred, the resulting adaptive

response exhibited perfect adaptation, suggesting that perfect adaptation is the optimal state.

We therefore explored the effects of perturbing the adaptive response away from perfect adap-

tation: indeed, the resulting fitnesses were lower. As reported in Chapter 2, the speculator

response lacks perfect adaptation; it would be interesting to repeat the perturbation analysis on

the speculator response, perturbing it further away and toward perfect adaptation.

How would the aforementioned evolutionary transitions be encoded biochemically? Bio-

chemical networks encoding chemotactic responses were evolved previously; protein interac-

tions were represented by rate constants and dynamics of the signalling pathway was described

by a series of ordinary differential equations [112]. In the model, the activity of an effector

protein (equivalent to the CheY protein in E. coli) represented the tumbling rate. We could

therefore substitute the response function model currently in use for the biochemical network

model of [112]. Constraining the maximum sensitivity could be achieved by capping the activity

of the effector protein. Apart from potentially allowing us to study how the evolutionary tran-

sitions between inverted-type and adaptive and speculator responses could have occurred bio-

chemically, this model could be used to study how environment affects biochemically-encoded

chemotactic responses. In particular, a network optimised under one type of environment could

be re-optimised under different types of environments by keeping the structure of the network

intact but re-optimising the rate constants.
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Appendix A

Dynamics of the attractant distribution

See video file AppendixA.avi on the enclosed CD (alternatively, clicking this link will take

you to a YouTube video). Dynamics of the attractant distribution is shown for a) T = 104,

L = 100; b) T = 104, L = 20; c) T = 100, L = 100; and d) T = 100, L = 20.

http://youtu.be/M48Z9SZiqO4
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Appendix B

Dynamics of optimised adaptive, inverted and

speculator responses

See video file AppendixB.avi on the enclosed CD (alternatively, clicking this link will take

you to a YouTube video). Dynamics of a) adaptive, b) inverted and c) speculator responses are

shown for T = 104, L = 20 (which is also the combination under which the responses were

optimised). The parameters used are: α0 = 0.0065, β = 4.2, A =−2100, B = 2100, τ = 0.016

in adaptive, α0 = 0.0016, β = 0.048, A = 3.7, B = 0, τ = 5.8 in inverted and α0 = 0.0089,

β = 0.056, A = 74, B = −67, τ = 33 in speculator response. In the adaptive response, the

bacterium swims up attractant gradients and tumbles when it experiences a decrease in attrac-

tant concentration. This leads to an oscillatory behaviour around peak maxima. In the inverted

response, tumbling rate increases with increasing attractant concentration. Response sensitiv-

ity is optimised such that the bacterium tumbles most persistently at attractant concentrations

which correspond to typical concentrations at attractant maxima. However, this means that

the bacterium can get stuck at suboptimal concentrations on peaks that are larger than average

by chance. The speculator response compares the current concentration of attractant with a

long-term average. If the current concentration is greater than this average, the bacterium tum-

bles more. If the current concentration is lower than the average, or declining, the bacterium

swims away, leaving the peak to search for higher attractant concentrations. The bacterium will

typically run past peaks if their amplitude is lower than the peak it just left.

http://youtu.be/J3UA-WxoCNQ
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